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A general approximate analytical solution is presented for transmission of plane
sound waves in subsonic low Mach number ducts with axial ambient gradients
and cross-sectional area variations. This is essentially a high frequency
approximation and explicit criteria are presented for the estimation of the lower
limiting frequency in practical applications. For uniform ducts, the proposed
solution is almost exact for the temperature gradients and frequencies that are
likely to be encountered in practice. In the case of non-uniform ducts, the lower
limiting frequency increases with the cross-sectional area gradient and in
applications where low frequencies are important, the utility of the approximate
solution will be limited to ducts with a relatively small area ratio.
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1. INTRODUCTION

The object of this paper is to present a simple general approximate analytical
solution for transmission of plane sound waves in subsonic low Mach number
ducts with axial ambient gradients and cross-sectional area variations.
Approximate analytical solutions for uniform ducts with axial temperature
gradients have been presented previously by Cummings [1, 2] using the WKB
method. Non-uniform ducts carrying an incompressible mean flow with Mach
number squared much less than unity [3], and the classical horn equation, admit
exact analytical solutions for certain duct shapes; however, a general analytical
solution applicable for ducts of any shape, subsonic low mean flow Mach numbers
and axial ambient gradients is not available.

As is well known, the plane sound wave field in a uniform homogeneous duct
is given by the superposition of two uncoupled plane waves travelling in opposite
directions. With ambient gradients and cross-sectional area variations present, the
two travelling waves become coupled; however, in many practical cases, the axial
non-uniformities are slowly varying functions of the duct axis and the coupling
between the travelling waves is weak. The coupling terms in the state–space
equations for the travelling wave components may then be neglected to obtain the
simple general approximate analytical solution proposed in this paper. This
approach has been used previously in reference [4] for the analysis of sound
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propagation in uniform pipes with axial temperature gradients. In the present
paper it is extended to the general case of plane sound wave propagation in ducts
with axial ambient gradients and cross-sectional area variations. In the former case
[4], the approximate solutions are almost exact for temperature gradients and
frequencies that are likely to be encountered in practice. With cross-sectional area
variations present, however, the accuracy of the proposed approximate approach
becomes more critical. Therefore, in the present paper, further considerations are
given to the question of accuracy. In particular, it is shown that the proposed
analytical solution is essentially a high frequency approximation and explicit
criteria are presented for the estimation of the lower limiting frequency in practical
applications. Approximate solutions are compared with the corresponding exact
ones, which are computed by using a numerical matrizant method which is
described briefly in the Appendix.

2. PROBLEM FORMULATION AND AN APPROXIMATE SOLUTION

2.1.   

The equations of plane wave duct acoustics come from the one-dimensional gas
dynamic equations. Upon assuming e−ivt time dependence, where i denotes the unit
imaginary number, v is the radian frequency and t is the time, the basic acoustic
equations are as follows.

The continuity equation is

− ivr+ vor'+ vr'o + rov'+ rv'o + (rov+ rvo)(ln S)'=0. (1)

The momentum equation is

ro(−ivv+ vov'+ vv'o)+ vov'or+ p'=0. (2)

For a perfect gas, the energy equation, which is tantamount to the statement that
the sound propagation is isentropic, can be expressed as [5]

− ivp+ vop'+ vp'o + gopov'+ gopv'o + go(pov+ pvo)(ln S)'=0. (3)

Here, a prime (') denotes differentiation with respect to x, the duct axis, S denotes
the duct cross-sectional area and go is the ratio of specific heat coefficients of the
ambient gas. r, p and v, the acoustic density, pressure and particle velocity,
respectively, are first order perturbations, with zero averages, superimposed on the
corresponding steady mean flow values ro, po and vo, which are to be understood
as cross-sectional averages and are assumed to be known as functions of x, with
the continuity equation (rovoS)'=0 and the state equation po = roRTo satisfied
along the duct. Here, R denotes the gas constant and To is the ambient
temperature.
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2.2.     

The following transformation is applied to equations (1)–(3) in order to recast
them in a form that displays the coupling between the travelling wave components,
namely,

p= p+ + p−, rocov= p+ − p−, c2
or= p+ o, (4a, b, c)

where co =zgoRTo is the local speed of sound. By using equations (4) in the basic
acoustic equations, it can be shown, after some algebra, that the pressure wave
components, p+ and p−, are given by

$p+'
p−'%=$ A[Mo]

B[−Mo]
B[Mo]

A*[−Mo]%$p+

p−%−
M2

o(ln vo)'
2(1−M2

o) $1−Mo

1+Mo%o, (5)

where Mo = vo/co denotes the local mean flow Mach number, an asterisk (*)
denotes complex conjugate and A[Mo], B[Mo] and o are given by

A[Mo]= (i2ko + (1+Mo)(ln roco)'−Mo(1+ go +Mo)(ln vo)'

− (ln po)'/go − (1+ goMo)(ln S)')/2(1+Mo), (6)

B[Mo]= (− (1+Mo)(ln roco)'−Mo(−1+ go +Mo)(ln vo)'

+ (ln po)'/go + (1− goMo)(ln S)')/2(1+Mo), (7)

o'− (iko/Mo + (ln gopo)')o=(ln go)'p, (8)

where ko =v/co denotes the local wavenumber. It should be noted that A[Mo] and
B[Mo] are functions of x: that is, A[Mo]=A(x) and B[Mo]=B(x). The symbolic
notation A[Mo] and B[Mo] is used here to indiacate the relationship between the
diagonal and the off-diagonal elements of the state–space matrix in equation (5).
In the case of a compressible subsonic mean flow, the following isentropic
relationships apply for the gradients in equations (6)–(8), namely,
(ln vo)'=−(ln S)'/(1−M2

o), (ln ro)'+M2
o(ln vo)'=0 and (ln po)'= go(ln ro)'.

Equations (5) and (8) can also be solved for prescribed ambient temperature and
pressure distributions.

2.3.   M  

Equations (5) and (8) have been solved numerically, by using a numerical
matrizant method which is similar to that described in the Appendix, as a coupled
system of three first order differential equations in p+, p− and o. This part of the
analysis, which has been presented elsewhere [5], has shown that, for the subsonic
low Mach numbers that are of interest here, say Mo Q 0·3, the second term on the
right of equation (5) is negligibly small. Thus, the following simplified form of
equation (6) is assumed to be valid throughout the present analysis, namely,

$p+'
p−'%=$ A[Mo]

B[−Mo]
B[Mo]

A*[−Mo]%$p+

p−%. (9)
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The more usual approach to reduce equations (1)–(3) into a system of differential
equations with two variables is to neglect the product v'ovor as a small term of the
second order in the momentum equation, equation (2). This omission decouples
equation (1) from equations (2) and (3), and p and v can then be determined by
solving only the latter two equations. If this approach were adopted in the present
analysis, equation (4c) would not be needed, and in equations (6) and (7) the term
Mo in the coefficients of (ln vo)' in brackets would be absent. The present approach,
which is tantamount to assuming that v'ovoo/c2

o is small to second order, is more
accurate because, for subsonic low Mach number ducts, the error in the isentropic
relationship p= c2

0r is negligibly small and, therefore, the term v'ovoo/c2
o is some

orders of magnitude smaller than the term v'ovor. Indeed, equation (9) can be
derived directly by replacing the energy equation by p= c2

or.

2.4.       

For a duct of length L, the general solution of equation (9) can be expressed
as,

$p+(L)
p−(L)%=$T11

T21

T12

T22%$p+(0)
p−(0)%, (10)

where the square 2×2 matrix is called the scattering matrix of the duct. The exact
duct scattering matrix can be evaluated accurately by using the numerical
matrizant method described in the Appendix.

An important feature of equation (9) is that the off-diagonal elements of the
state–space matrix, B[Mo] and B[−Mo], are independent of frequency and their
magnitudes are determined only by the spatial gradients. Then, if the latter are
small enough, equation (9) may be decoupled by neglecting the off-diagonal terms
of the state–space matrix, in which case, the solution of equation (9) is given by

p+(x)= p+(0) exp 0g
x

0

A[Mo] dx1, p−(x)= p−(0) exp 0g
x

0

A*[−Mo] dx1,
(11a, b)

Hence, for a duct of length L, the elements of the scattering matrix can be
expressed as, approximately,

T11 = exp 0g
L

0

A[Mo] dx1, T12 =0,

T21 =0, T22 = exp 0g
L

0

A*[−Mo] dx. (12a, b)



    , I 857

This is the general approximate analytical solution that is proposed in this paper.
Thus, insofar as the deletion of the off-diagonal terms of the state–space matrix
is valid, the solution of equation (9) consists of two slightly attenuated uncoupled
waves travelling in +x and −x directions with phase velocities co(1+Mo) and
co(1−Mo), and attenuation determined by the real parts of A[Mo] and
A*[−Mo], respectively. The ellimination of the coupling between the pressure
wave components may cause significant errors if the spatial gradients are not small
enough. The next section is, therefore, devoted to the conditions under which the
proposed approximate solution will give satisfactory results.

3. A CRITICAL STUDY OF THE PROPOSED APPROXIMATE SOLUTION

This section will present criteria which can be used to estimate the accuracy to
expect when using equations (12) in a given problem. The analysis is based on
ducts with no mean flow, but the results derived on this basis are applicable also
when there exists a subsonic low Mach number mean flow. Indeed, uniform mean
flow in a uniform duct causes no coupling between the pressure wave components.
The coupling of the plane wave components is caused primarily by ambient
gradients and cross-sectional area variations, the non-uniformity which the mean
flow acquires by the presence of these primary effects having only a secondary
contribution. Some numerical results which confirm this are presented later in the
section.

3.1.         

For a duct in which the mean flow is negligible but there exists arbitrary ambient
gradients, equations (6) and (7) can be expressed as

A(x)= ik−C/2, B(x)=C/2, (13a, b)

where

C(x)= (ln S/roco)'+ (ln po)'/go. (14)

Substituting equations (13a) and (13b) into equation (9) and backtransforming to
the variables p and v, one obtains, after some algebra,

p0+(C+(ln co)')p'+ k2p=0, (15)

V0+(C+(ln co)')V'+ (k2 +C(ln co)'+C')V=0, (16)

where V= rocov. A similar backtransformation can also be applied to equation
(9) where A(x) is given by equation (13a) and B(x)=0. Obviously, this is
equivalent to deletion of the off-diagonal terms in equation (9), as was assumed
in the proposed approximate analytical solution, equations (11). Thus, it follows
that the latter is in fact the exact solution of the following set of equations:

p0+(C+(ln co)')p'+ (k2 + (ln co)'C/2+C'/2+C2/4)p=0, (17)

V0+(C+(ln co)')V'+ (k2 + (ln co)'C/2+C'/2+C2/4)V=0. (18)
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Equations (15) and (17) will be approximately identical if

4k2�=2C(ln co)'+2C'+C2=. (19)

If this condition is satisfied, then equation (18) will reduce to

V0+(C+(ln co)')V'+ k2V=0, (20)

which will coincide with equation (16) if

k2�=C(ln co)'+C'=. (21)

The more critical of the conditions (19) and (21) then determines the condition
for the proposed approximate analytical solution to be close to the corresponding
exact solution. These conditions will obviously be satisfied if the frequency is high
enough. This proves that the proposed approximate analytical solution is
essentially a high frequency approximation.

With mean flow, the elements of the state–space matrix in equation (9) are
considerably more complicated and do not lend themselves to a similar explicit
analysis, however, as has been pointed out at the beginning of this section, the
foregoing results are applicable also for ducts carrying a subsonic low Mach
number mean flow. Numerical results that confirm this are presented in what
follows together with the implementations of conditions (19) and (21) for some
practical duct acoustics problems. The main question here is how to replace a
much greater than ‘‘�’’ criterion by greater than ‘‘q ’’ criterion. Here, this
question is dealt with heuristically for each case considered, by comparing the
predictions of the approximate theory to the exact results computed by using a
numerical matrizant method. A brief description of this method is given in the
Appendix. The trapezoid formula is used for the evaluation of the integrals in
equations (12)

3.2.     

Consider a uniform duct with p'o =0, vo =0 and g'o =0. Previously, this problem
has been considered by Cummings [1] who presented an approximate analytical
solution by using the WKB method. For this duct, C=(ln co)'=−(ln ro)'/2 and,
therefore, conditions (19) and (21) can be expressed as,

k�z=7d2 − d(ln r'o)'=, k�z2=6d2 − d(ln r'o)'=, (22a, b)

respectively, where d=−C/2. Conditions (22) are applicable for any form of
temperature distribution. Here, it is expedient to consider the case of linear
temperature distribution, that is, To(x)= (1+ tx)To(0), where =tx= is not
necessarily small. For this case (ln r'o)'=8d and, therefore, the second condition
turns out to be the more critical one. With the appropriate substitutions made for
d, this condition can be expressed as, for a duct of length L,

kL�=DTo=/2To, (23a)

or, more explicitly,

f�f *=
=DTo=
4pL XgoR

Toc
, (23b)
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where f is the frequency, D denotes the difference between the terminal values of
its argument, in this case To, and Toc is the temperature, in K, of the colder end
of the duct.

The elements of the exact and approximate solutions for the duct scattering
matrix were computed for inlet mean flow Mach numbers, Mo(0), up to 0·3 and
temperature gradients as high as 300°C/m. No results are presented here as no
deviation worthy of reporting really exists between the exact and approximate
solutions, and condition (23b) appears to be applicable as fq f *, approximately.
This applies for both the diagonal and the off-diagonal elements of the duct
scattering matrix. Thus, for example, if the lower limiting frequency is set at 10 Hz,
then, using go =1·4 and R=287, condition (23b) reduces to DTo Q 6·27 LzToc :
that is, if the cold end temperature of a 1-m long duct is, say, 600°C, the
approximate analytical solution will be accurate for high end temperatures up to
780°C.

It should be noted that, while the present results are complementary to those
presented in reference [4], there is a slight difference between the governing
equations used in the two analyses, which is due to the adoption in reference [4]
of the simplification based on the omission of the term v'ovor, as described in
section 2.3. Also, it may be of interest to note that, condition (22a) is a required
condition in the WKB solution of reference [1], too.

3.3. -     

Consider a non-uniform duct with p'o =0, r'o =0, vo =0 and c'o =0. For this
duct C=(ln S)' and conditions (19) and (21) become, respectively,

2k�z=(ln S)'{2(ln S')'− (ln S)'}=, k�z=(ln S)'{(ln S')'− (ln S)'}=. (24a, b)

These will be applied here to exponential and conical ducts. Explicit criteria for
ducts with other shapes can be derived similarly.

For an exponential duct, S(x)=S(0) e2mx, that is, (ln S')'= (ln S)' and,
therefore, conditions (19) and (21) reduce to k�=m= and k�0, respectively. Hence,
in this case condition (24a) is the more critical of the two conditions and, for a
duct of length L, gives the following criterion, namely

kL�=D ln S=/2, (25a)

or,

f�f *= (co/4pL)=ln {S(L)/S(0)}=. (25b)

This result is valid for both convergent and divergent exponential ducts.
Shown in Figure 1, for the case of no mean flow, are the exact and approximate

solutions, as computed by using the numerical matrizant method and equations
(12), respectively, for the elements of the scattering matrix of a 1-m long
exponential duct with S(0)=0·01 m2, S(L)=0·02 m2 and To =25°C. Figure 2
shows the elements of the scattering matrix of the same duct but with an
incompressible mean flow of Mach number Mo(0)=0·3. For this duct f*=19 Hz
and, as can be seen from Figures 1 and 2, condition (25b) can be implemented
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Figure 1. The elements of the scattering matrix of a 1-m long exponential diverging duct with inlet
cross-sectional area of 0·01 m2 and outlet cross-sectional area of 0·02 m2. Mo(0)=0, To =25°C.
Curves with the larger amplitudes are the numerical matrizant solutions.

as approximately fq 190 Hz. This condition is needed for the exact off-diagonal
elements to be considered negligibly small. The diagonal elements given by the
approximate solution are almost exact for all frequencies. That the lower limiting
frequency criterion is not appreciably affected by the presence of mean flow is
clearly observable from Figures 1 and 2.

For a conical duct with a truncated cone length a, S(x)=S(0)(1+ x/a)2, that
is, 2(ln S')'= (ln S)' and, therefore, conditions (24a) and (24b) reduce to k�0 and
k�=(ln S)'=/z2, respectively. Hence, in this case, condition (24b) is the more
critical of the above two conditions and, for a duct of length L, leads to the
following criterion:

kL�=(DzS)/zS=z2, (26a)
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Figure 2. The elements of the scattering matrix of a 1-m long exponential diverging duct with inlet
cross-sectional area of 0·01 m2 and outlet cross-sectional area of 0·02 m2. Mo(0)=0·3, To =25°C.
Curves with the larger amplitudes are the numerical matrizant solutions.

or

f�f *= (co/pLz2)=zS(L)−zS(0)=zSmin , (26b)

where Smin denotes the cross-sectional area of the end with the smaller diameter.
This criterion holds for both divergent and convergent conical ducts. Figure 3
shows, for the case of no mean flow, the elements of the scattering matrix of a
0·444-m long diverging conical duct with inlet diameter of 0·0246 m and truncated
cone length of 0·141 m and To =25°C. One set of the results given in Figure 3 is
computed by using the numerical matrizant solution, and the other set by using
equations (12). Figure 4 shows the diagonal elements of the scattering matrix of
the same duct but with an incompressible mean flow with M0(0)=0·3. For this
conical duct f *=550 Hz and, as can be deduced from Figures 3 and 4, for
practical purposes, condition (26b) can be implemented as approximately
fq 1100 Hz. The area ratio of this duct is 17·2, compared to 2 of the exponential
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duct considered above and, as can be expected, the lower limiting frequency is
considerably higher. Thus, the applicability of the proposed approximate solution
to non-uniform ducts will be limited in most practical cases to relatively small area
ratios. That the lower limiting frequency criterion is not appreciably affected by
the presence of mean flow is also confirmed by Figures 3 and 4.

The duct examples considered above are taken from reference [3] where exact
analytical solutions are presented for exponential and conical ducts carrying an
incompressible mean flow the Mach number of which is assumed to satisfy the
condition M2

o�1. This assumption is not required in the present analysis.

3.4. -    

Consider a non-uniform duct with p'o =0, vo =0 and g'o =0. For this duct,
equation (14) becomes C=(ln S)'+ (ln co)' and conditions (19) and (21) can be

Figure 3. The elements of the scattering matrix of a 0·444-m long diverging conical duct with inlet
diameter 0·0246 m and truncated cone length 0·141 m. Mo(0)=0, To =25°C. Curves with the larger
amplitudes are the numerical matrizant solutions.
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Figure 4. The elements of the scattering matrix of a 0·444-m long diverging conical duct with inlet
diameter 0·0246 m and truncated cone length 0·141 m. Mo(0)=0·3, To =25°C. Curves with the
larger amplitudes are the numerical matrizant solutions.

implemented similarly for a given duct. The criteria related to exponential and
conical ducts with a linear axial ambient temperature distribution are summarized
in the following.

For an exponential duct of length L, conditions (19) and (21) yield, respectively,

4kL�z=(2D ln S)2 − (DTo/To)2 −8(D ln S)(DTo/To)=, (27a)

2kL�z=(DTo/To)2 +2(D ln S)(DTo/To)=. (27b)

The more critical of these depends on the relative magnitudes of the temperature
and cross-sectional area gradients. For example, if the end temperatures of the
exponential duct considered in Figures 1 and 2 are To(0)=800°C and
To(L)=600°C, then conditions (27a) and (27b) reduce to kL�0·2128 and
kL�0·185, respectively. Hence, condition (27a) is the more critical one in this case
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and gives the criterion f�25 Hz. The elements of the scattering matrix of this duct,
as calculated by the numerical matrizant method and the proposed approximate
solution, equations (12), are shown in Figure 5 for Mo(0)=0·3. It is seen that,
the lower limiting frequency for this case is approximately fq 250 Hz. Actually,
this is required for the exact off-diagonal elements to become small enough so that
they can be neglected, as the diagonal elements are almost exact for all frequencies.
This lower limiting frequency is also valid if there is no mean flow.

For a conical duct having a linear distribution of ambient temperature over its
length, L, conditions (19) and (21) can be expressed as, respectively,

4kL�z=(DTo/To)2 +16(DzS/zS)(DTo/To)=, (28a)

2kL�z=8(DzS/zS)2 + (DTo/To)2 +4(DzS/zS)(DTo/To)=. (28b)

Figure 5. The elements of the scattering matrix of a 1-m long exponential diverging conical duct
with inlet cross-sectional area of 0·01 m2 and outlet cross-sectional area of 0·02 m2. Mo(0)=0·3,
To(0)=800°C, To(L)=600°C. Curves with the larger amplitudes are the numerical matrizant
solutions.
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Figure 6. The elements of the scattering matrix of a 0·444-m long diverging conical duct with inlet
diameter 0·0246 m and truncated cone length 0·141 m. Mo(0)=0·3, To(0)=600°C, To(0)=500°C.
Curves with the larger amplitudes are the numerical matrizant solutions.

For example, if the end temperatures of the conical duct considered in Figures 3
and 4 are To(0)=600°C and To(L)=500°C, then conditions (28a) and (28b)
reduce to kL�0·639 and kL�4·5, respectively. Hence, condition (28b) is the more
critical one in this case and leads to the criterion f�950 Hz. The elements of the
scattering matrix of this duct, as calculated by the numerical matrizant method
and also by equations (12), are shown in Figure 6 for Mo(0)=0·3. It is seen that,
although in this case a lower limiting frequency of fq 2000 Hz or more is required,
fq 1500 Hz may still be acceptable for practical purposes.

5. CONCLUSION

The solution of equation (9) can be expressed in the scattering matrix form
defined by equation (10) where the elements of the scattering matrix are given by
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equations (12) if the frequency is high enough. In the case of uniform ducts,
equations (12) are almost exact for the temperature gradients and frequencies that
are likely to be encountered in practice. In the case of non-uniform ducts, the lower
limiting frequency increases with the cross-sectional area gradient and in
applications where low frequencies are important, the utility of equations (12) will
be limited to ducts with a relatively small area ratio. Conditions (19) and (21) can
be used to estimate the lower limiting frequency with no mean flow and also in the
presence of a subsonic mean flow. The present formulation allows one to set a
prescribed ambient pressure gradient along the duct, however, for the usual pressure
losses that are encountered in practice, the effect of the pressure gradient on the
elements of duct scattering matrices is small.
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APPENDIX: THE NUMERICAL MATRIZANT SOLUTION

Equation (9) can be expressed briefly as

P'(x)=H(x)P(x) (A1)

where P(x)= {p+(x) p−(x)} and the elements of matrix H(x) are given by
equations (6) and (7). The general solution of equation (A1) can be expressed as,

P(x)= [T]x0P(0) (A2)

where [T]x0 denotes the matrizant [6] for the interval (0, x), which is a function of
H(x). The scattering matrix of a duct of length L is given by the matrizant [T]L0 .
This can be evaluated numerically by dividing the interval 0E xEL into N parts
by introducing intermediate points x1, x2, . . . , xN−1. For simplicitly, the lengths
of the parts are assumed to be all equal, i.e., l= xk − xk−1, k=1, 2, . . . , N and
xN =L=Nl. Then, using the well known properties of the matrizant, it can be
shown that

[T]L0 = [T]xN
xN−1

· · · [T]x2
x1

[T]x1
0 , (A3)
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where [T]xk
xk−1

denotes the matrizant for the interval (xk−1, xk ), xk−1 E xE xk . Now,
let jk be a point, always the mid-point in this paper, in the interval (xk−1, xk ),
k=1, 2, . . . . , N. By regarding l as a sufficiently small quantity, one may assume,
for the approximate evaluation of the matrizant, H(x)3H(jk )=Hk , say. Then,
Hk is independent of x and the matrizant for the interval (xk−1, xk ) can be shown
to be

[T]xk
xk−1

=exp (Hkl)=F−1
k exp (L� kl)F� k (A4)

where L� k and F� k are the eigenvalue and eigenvector matrices of the matrix Hk . As
the number of parts is increased, equation (A3) will converge to the exact solution.
Convergence is in general very fast and only few number of divisions are required
to obtain accurate results.

For a duct with a given axial temperature distribution, the local mean flow
Mach number can be computed from,

Mo =M(x)/C(x) (A5)

where

M(x)= vo(0)po(0)To(x)S(0)/co(0)po(x)To(0)S(x), (A6)

C(x)=zTo(x)go(x)/To(0)go(0). (A7)

Then, the mean flow velocity and the speed of sound are given by
vo(x)=M(x)co(0) and co(x)=C(x)co(0), respectively.

Hence, given T0 =To(x), go = go(To), po = po(x), S=S(x) and vo(0), the matrix
H(x) can be evaluated as a function of x.


